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Abstract. Based on hydrodynamic model of plasmas an analytical investigation of frequency modulational
interaction between copropagating high frequency pump and acoustic mode and consequent amplification
(steady-state and transient) of the modulated waves is carried out in a magnetised piezoelectric semicon-
ductor medium. The phenomenon of modulational amplification is treated as four wave interaction process
involving cubic nonlinearity of the medium. Gain constants, threshold-pump intensities and optimum-pulse
duration for the onset of modulational instabilities are estimated. The analysis has been performed in non-
dispersive regime of the acoustic mode, which is one of the preconditions for achieving an appreciable
initial steady-state growth of the modulated signal wave. It is found that the transient gain constant di-
minishes very rapidly if one chooses the pump pulse duration beyond the maximum gain point. Moreover,
the desired value of the gain can be obtained by adjusting intensity and pulse duration of the pump and
doping concentration of the medium concerned.

PACS. 52.35.Mw Nonlinear waves and nonlinear wave propagation (including parametric effects,
mode coupling, ponderative effects, etc.) – 42.65.Ky Harmonic generation, frequency conversion –
42.50.Md Optical transient phenomena: quantum beats, photon echo, free-induction decay,
dephasings and revivals, optical nutation, and self-induced transparency

1 Introduction

The problems of interaction of high-power incident ra-
diation with plasmas are of outstanding interest in
plasma physics [1,2]. High-power lasers and strong radio-
frequency sources are being developed or planned for fu-
ture use in order to obtain fusion energy. The possibil-
ity of obtaining fusion energy depends to a large extent
on the success of technological developments of such high
power devices, and to an equally high degree on a full un-
derstanding of the basic problem of how electromagnetic
energy of these intense radiation fields may couple or may
be forced to couple most efficiently in the fusion plasma
or laboratory plasma or solid state plasma etc. At high
power levels that are nowadays not only attracting the at-
tention of the fusion plasma physicists but also that of the
basic physicists dealing with nonlinear interactions.

The breakdown of superposition principle in a non-
linear medium leads to interaction between waves of dif-
ferent frequencies. There exists a number of nonlinear
interactions which can be classified as modulational in-
teraction of coupled modes. By modulational interactions
of coupled modes and consequent amplification of decay
channels, one generally refers to as an instability of wave
propagating in nonlinear dispersive medium such that the
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steady-state becomes unstable and evolves into a tempo-
rally modulated state [3]. The concept of transverse mod-
ulational instability originates from a space-time analogy
that exists when the dispersion is replaced by diffrac-
tion [4]. The well-known instability of a plane wave in a
self-focusing Kerr-medium [5] is an example of transverse
modulation instability.

Modulational interaction of propagating beams has
been a field of interest since the origin of physical op-
tics with its concentration on diffraction and wave guiding
processes. This is due to the fact that the scattering of
light from sound or low frequency electromagnetic wave
affords a convenient means of controlling the frequency,
intensity and direction of an optical beam [6]. The type
of modulation makes possible a large number of applica-
tions involving the transmission, display and processing of
information [7]. The fabrication of some optical and mi-
crowave devices such as acousto-optic modulators and low
noise amplifiers are based on the interaction of an acoustic
wave (AW) or a low-frequency electromagnetic wave with
the incident pump beam [8,9].

The modulation problems have been studied theoret-
ically by a number of workers [10, 11] due to its vast
technological potentialities. An important field of study
in nonlinear acoustics is amplification/attenuation and
frequency mixing of waves in semiconductors (specially
III-V semiconductors) [12–14] because of its immediate
relevance to problems of optical communication systems.



302 The European Physical Journal D

The importance of semiconductor crystals lies largely in
the presence of free-carrier states and the photo generation
of carriers. Looking at the potential of the semiconductors
in modern optoelectronic technology, the analytical inves-
tigations of some basic nonlinear processes in such crys-
tals are of considerable significance. These studies become
more important when the media concerned are piezoelec-
tric semiconductors mainly because of the consideration
of energy gain or loss.

A large amount of work on modulational instability
in solid-state plasmas is available in references [15–19].
Anderson et al. [20] have found that growth rate of in-
stability in LiNbO3 is large enough for an experimental
demonstration of amplitude modulation and envelop soli-
ton. The most recent activity in this area has been due to
the modes of wave propagation in optical fibres [7,21,22].

The discussion have so for been restricted to steady-
state type of solutions [8,11,18]. The deformation in time
of laser pulse propagating in a medium with an inten-
sity dependent index of refraction provides an example
of transient nonlinear effect [23]. Such transient solutions
i.e. combined growth of monochromatic waves in space
and time are of practical importance because the power-
ful laser pump is often a short travelling pulse.

In centrosymmetric semiconductors the dominant non-
linear optical processes may be described in terms of elec-
tric polarisation which is a cubic function of electric field
amplitude. The third-order nonlinear optical susceptibil-
ity χ(3) is in general a complex quantity and is capable of
describing the interference between various resonant and
nonresonant processes [24]. The third-order susceptibility
tensor χ(3) can be conveniently used to explain modula-
tion processes in a Kerr active medium.

In the light of above, in the present paper, by consid-
ering that the origin of modulational interaction lies in
the third-order optical susceptibility χ(3) arising from the
nonlinear induced current density; an analytical investi-
gation of modulational interaction between copropagating
pump beam and internally generated acoustic mode (due
to piezoelectricity) is presented in magnetised piezoelec-
tric semiconductor plasma medium; as a result of which
AW is amplified at the expense of pump. With the help of
coupled-mode theory of plasmas, we have studied steady-
state and transient amplification characteristic of modu-
lated waves. However, as far as we know, no such attempt
has been made to determine transient growth rate via
steady-state growth rate of the modulated wave in magne-
tised semiconductor plasmas. Finally exhaustive numeri-
cal analysis have been performed with a set of data ap-
propriate for a piezoelectric crystal duly irradiated by
a frequency doubled and pulsed 10.6 µm CO2 laser to
establish the validity of this model.

2 Theoretical formulation

This section is devoted to theoretical formulation in which
we have considered the well-known hydrodynamic model
of a homogeneous semiconductor plasma of infinite ex-
tent to study the modulational interaction between intense

pump wave and acoustic signal and consequent amplifica-
tion (steady-state and transient) of the modulated wave,
in an obliquely magnetised n-type piezoelectric semicon-
ductor. A semiconductor plasma medium is found to offer
the greatest device potential. We know that if the unit cell
of a crystal contains at least two different atoms, the crys-
tal can exhibit piezoelectricity. In such materials, a part
of mechanical energy of the vibrations is in the form of
electrical energy; the AW is then accompanied by an elec-
tromagnetic wave. Hence one may expect strong coupling
between AW and the electromagnetic wave in piezoelec-
tric semiconductors. It is assumed that the origin of the
said interaction lies in the effective third-order nonlinear
optical susceptibility χ(3)

e . It is obvious from a simple sym-
metry argument that χ(2) and higher even order terms
are zero if the medium possesses a centre of symmetry.
Nonlinear phenomena in these centrosymmetric crystals
(such as cubic crystals) thus depend on χ(3) and higher
odd order terms. In such materials, four wave mixing pro-
cesses can be induced at comparatively lower magnitude
of pump field E0. Hence the medium is considered to be
a an n-type centrosymmetric or nearly centrosymmetric
and immersed in static magnetic field Bs arbitrarily lying
in x-z plane and inclined at an angle θ with x-direction.
The medium is irradiated by an intense hybrid but plane
pump wave expressed using plane wave approximation as

E0 = (E0xx̂ +E0yŷ) exp
[
i(k0x− ω0t)

]
. (1)

Many of the reported cases correspond to the prop-
agation of a pump wave exactly parallel to the external
magnetic field [25]. Such an exact parallel propagation can
not be feasible experimentally. On the other hand earlier
workers considered the electric field of the pump parallel
to the propagation vector [12]. This again is not a realis-
tic situation. For a finite semiconductor plasma, E0 must
have components both parallel and perpendicular to the
propagation vector. Thus here we have considered a hy-
brid pump wave. Here the use of hydrodynamic model en-
ables us to replace the electron plasma or the streaming
electrons by a charged fluid characterised by a few macro-
scopic parameters like mean carrier density, mean velocity
etc. of the plasma fluid and thus makes the analysis of
modulational interaction and other related phenomena,
simple. The basic equations governing the modulational
instability are

∂v0

∂t
+ νv0 =

e

m
[E0 + v0 ×Bs + v0 ×B0] , (2)

∂v1

∂t
+ v0

∂v1

∂x
+ νv1 =

e

m
[E1 + v1 ×Bs] , (3)

∂n1

∂t
+ ne

∂v1

∂x
+ n1

∂v0

∂x
+ v0

∂n1

∂x
= 0, (4)

∂Ea
∂x

+
β

ε

∂2u

∂x2
=
n1e

ε
, (5)

∂2u

∂t2
+ 2γa

∂u

∂t
+
β

ρ

∂Ea
∂x

=
c

ρ

∂2u

∂x2
· (6)

Equations (2, 3) are the linearised momentum transfer
equations under the influence of pump and signal waves.
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Here v0 and v1 are the zeroth and first order oscillatory
fluid velocities and Bs and B0 are the applied static and
pump magnetic fields, respectively. ν is the phenomeno-
logical collision frequency of electrons. We have neglected
the term v0 (∂v0/∂x) in equation (2) under the assump-
tion ω0 � ν � k0 · v0. In equation (3) the Lorentz force
due to the terms v0 ×B1 and v1 ×B0 can safely be ne-
glected if we assume that the transverse acoustic wave
is propagating in such a direction of the crystal that it
produces a longitudinal electric field viz. in n-InSb if k is
along (011) and the lattice displacement u is along (100) so
that the electric field induced by the wave is longitudinal.
Equation (4) is the continuity equation with ne and n1

being the unperturbed and perturbed electron densities
respectively. The Poisson equation (Eq. (5)) determines
the space charge field Ea . ε and β are the total permittiv-
ity and piezoelectric constant of the medium, respectively.
ε is equivalent to ε0ε1; ε0 and ε1 being free space and high
frequency dielectric constants of the crystal, respectively.
Equation (6) describes lattice vibrations in the piezoelec-
tric crystal of material density ρ. γa and c are the respec-
tive damping parameter and the crystal elastic constant.
u(x, t) = u exp

[
i(kax−ωat)

]
denotes displacement of lat-

tice points from their mean position. It is assumed that
the acoustic wave frequency is much lower than the pump
wave frequency ωa � ω0.

Physically a signal wave creates acoustic perturbation
(ωa,ka) and consequent electron density perturbation at
the acoustic frequency, which couples nonlinearly with the
incident pump wave to generate a modulated wave at the
frequencies ω0 ± ωa. Following Guha et al. [26] and us-
ing above mentioned equations in the collision dominated
regime (ν � k0 · v0, ωa), we get

∂2n1

∂t2
+ ν

∂n1

∂t
+ ω2

pn1 −
neeβ

mε

∂2u

∂x2

(ω2
cx + ν2)

(ω2
c + ν2)

= E0
∂n1

∂x
(7)

where

E0 =
e
m
|E0 + v0 ×Bs| , ω2

p = ω2
p

(ω2
cx + ν2)

(ω2
c + ν2)

with ωcx,z (= −eBsx,z/m) are the x and z components of
cyclotron frequency and ωp (=

√
nee2/mε) is the electron

plasma frequency of the medium. The Doppler shift has
been neglected under the assumption ω0 � ν � k0 ·v0. In
the above analysis the effect of pump magnetic field B0 is
neglected by considering that ωp and ωc are comparable
to ω0.

The modulation process in the medium considered
above must fulfil the phase matching conditions i.e.
k± = k0 ± ka and ω± = ω0 ± ωa known as momentum
and energy conservation relations, respectively. Here we
have considered only the resonant side band frequencies
(ω0 ± ωa) by assuming a long interaction path (by con-
sidering the crystal of infinite length) so that higher or-
der scattering terms being off-resonant, are negligible and
thus the only waves couple with the sound waves are the
incident (ω0) and scattered waves (ω0 ± ωa). On using

equations (5–7), the perturbed electron density oscillating
at the forced wave frequencies i.e. upper and lower side
band frequencies may be obtained as

n1(ω±, k±) =
ik3
aβ

2Eaω
2
p

eρ(ω2
a + 2iωaγa − k2

av
2
a)

×
[
ω2

p − ω2
± − iνω± + ik±E0

]−1
(8)

here va (=
√
c/ρ) is the velocity of acoustic wave in

the medium. We have also assumed here that electron
density perturbation at side band frequencies varies as
exp
[
i(k±x − ω±t)

]
. The density perturbations thus pro-

duced affect the propagation characteristics of the gen-
erated wave, which can be examined by employing the
general electromagnetic wave equations.

With a view to study the contributions to the non-
linear current density due to the induced polarisation in
the medium, the effect of the transition dipole moment
has been neglected. Thus the resonant component of the
induced nonlinear current densities due to density pertur-
bation oscillating at the forced wave frequencies are

J+ = −en1 (ω+,k+) v0 (9a)
J− = −en1 (ω−,k−) v∗0 (9b)

in which ∗ denotes the complex conjugate of the respective
term.

Henceforth treating induced polarisation P± at the
modulated frequencies as a time integral of the nonlinear
current density J±, we have

P± =
∫

J±dt. (10)

The effective nonlinear polarisation due to modulated
waves is obtained as

Pe = P+ + P−. (11)

It is essential for the amplification of modulated waves
that both the side bands should contribute equally and
this modulation is then transferred to the acoustic mode
which in turn gets amplified.

Thus from equations (8–11), we get the total effective
polarisation as

|Pe| =
ik3
aβ

2ω2
p

∣∣E0

∣∣ |Ea|
ω0ρ (ω2

a + 2iωaγa − k2
av

2
a)

×
[

1
ω+

(
δ2
1 − iνω+ + ik+E0

)−1

− 1
ω−

(δ2
2 − iνω− + ik−E0)−1

]
(12)

here δ2
1 = ω2

p − ω2
+, δ

2
2 = ω2

p − ω2
−, and in deriving this

equation we have used the plane wave approximation. It
is obvious from equation (12) that in absence of piezoelec-
tricity (i.e. β = 0) the total polarisation would become
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equal to zero. Hence in our study, consideration of piezo-
electricity is essential.

On simplifying equation (12) and rearranging the var-
ious terms, the total nonlinear polarisation Pe can be
obtained as

Pe =
2εAe2ω2

pk
2
a(δ2 − ν2)

m2ω4
0(ω2

a − k2
av

2
a + 2iωaγa)

|Ee|2 Ea

×
[{

(δ2+ν2)−2νka
ω0

E0−
(k2

0 − k2
a)

ω2
0

E
2

0

}2

+
4δ2k2

a

ω2
0

E
2

0

]−1

(13)

in which A = κ2k2
av

2
a, κ2 = β2/ερ and δ = ωp − ω0.

The components of oscillatory fluid velocity v0 in the
presence of pump E0 and static magnetic fields Bs may
be obtained from equation (2) as

v0x =
(e/m)E0x + ωczv0y

(ν − iω0)
, (14a)

v0y =

[
(e/m)[−ωczE0x + (ν − iω0)E0y

]
(ω2

c − ω2
0)

· (14b)

Using Maclaurin’s power series to expand equa-
tion (13), one obtains after some algebraic simplification,
the following expression for total nonlinear polarisation:

Pe =
2εAe2ω2

pk
2
a(δ2 − ν2)

m2ω4
0(ω2

a − k2
av

2
a + 2iωaγa)

|Ee|2 Ea

×
[
(δ2 + ν2)−2 +

4νka
ω0

(δ2 + ν2)−3E0

+
2
ω2

0

(5ν2k2
a − 3δ2k2

a + 2δ2k2
0)(δ2 + ν2)−4E

2

0 + · · ·
]
.

(15)

2.1 Effective third-order susceptibility and steady-state
gain coefficient

The third-order induced polarisation due to cubic nonlin-
earities at modulated frequencies (ω±) is defined as

P(3)
e = ε0χ

(3)
e |Ee|2 Ea. (16)

From equation (15) one may obtain the following expres-
sion for the third-order polarisation as

P(3)
e =

2εAe2ω2
pk

2
a(δ2 − ν2)(δ2 + ν2)−2

m2ω4
0(ω2

a − k2
av

2
a + 2iωaγa)

|Ee|2 Ea. (17)

Using equations (16, 17), the third-order susceptibility
may be obtained as

χ(3)
e =

2ε1Ae
2ω2

pk
2
a(δ2 − ν2)(δ2 + ν2)−2

m2ω4
0(ω2

a − k2
av

2
a + 2iωaγa)

· (18)

This equation reveals that the third-order susceptibility
χ

(3)
e (via Pe) couples the perturbed density wave at side

band frequencies ω± and the acoustic wave at ωa to pro-
duce modulational interaction.

It is also evident from equation (18) that χ(3)
e is a com-

plex quantity and thus can be separated into real and
imaginary parts as

χ(3)
e = χ(3)

er + iχ(3)
ei (19)

where

χ(3)
er =

2ε1Ae
2ω2

pk
2
a(δ2 − ν2)(ω2

a − k2
av

2
a)

m2ω4
0(δ2 + ν2)2

(
(ω2
a − k2

av
2
a)2 + 4ω2

aγ
2
a

) (20a)

and

χ
(3)
ei =

−4ε1Ae
2ω2

pk
2
a(δ2 − ν2)ωaγa

m2ω4
0(δ2 + ν2)2

(
(ω2
a − k2

av
2
a)2 + 4ω2

aγ
2
a

) (20b)

here the subscripts “r” and “i” to the susceptibility repre-
sent its real and imaginary parts, respectively. The above
equations (20) describe the steady-state optical response
of the medium in the presence of an oblique static mag-
netic field Bs and govern the nonlinear wave propagation
through the medium. It is evident that the nonlinear sus-
ceptibility is influenced by the unperturbed carrier con-
centration through ωp and the external magnetic field Bs

through ωc. Now the imaginary part (Eq. (20b)) of the
third-order susceptibility can easily be employed to obtain
steady-state growth and the real part (Eq. (20a)) is useful
in exploring the dispersive characteristics of the medium
for the propagating modulated wave.

From equation (20a), it may be inferred that χ(3)
er can

have positive and negative values depending upon the
relative values of ωp and ν. Positive dispersion of the
modulated wave occurs at ωp � ν and under such cir-
cumstances the nonlinear refractive index falls off with
distance from the beam axis. Snell’s law allows us to
conclude that beam velocity of the modulated wave in-
creases with the distance from the beam axis. This leads
to the occurrence of self-focusing of the signal. As χ(3)

er

becomes more positive, one may expect more effective self-
focusing of the modulated wave. However for nondisper-
sive acoustic mode at ωa ≈ ka · va, we observe anoma-
lous dispersion of the modulated wave in the medium as
χ

(3)
er → 0 when ωa → ka · va. It can further be concluded

for nondispersive acoustic mode, there is no change in the
refractive index of the medium due to induced current
density.

In order to explore the possibility of modulational am-
plification in the semiconductor plasma, we employ the
relation

αe =
ka
2εL

χ
(3)
ei |Ee|2 (21)

here αe is the effective nonlinear absorption coefficient.
The nonlinear growth of the modulated signal is possible
only if αe obtained from equation (21) is negative. Thus
from equations (20b, 21) it can be inferred that the growth
ge (= |−αe|) of the modulated wave can be achieved only
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when χ
(3)
ei is negative i.e. δ2 > ν2, which infers that the

growth is possible only in highly doped semiconductors.
This condition can be obtained by adjusting the doping
level of the medium. Thus the growth of the modulated
wave obtained from equations (20b, 21) as

ge =
−2ε1Ae

2ω2
pk

3
a(δ2 − ν2)ωaγa

εLm2ω4
0(δ2 + ν2)2

(
(ω2
a − k2

av
2
a)2 + 4ω2

aγ
2
a

) |Ee|2

(22)

or the steady-state gain of the modulated wave in n-InSb
crystal (data are given in the Sect. 3) may be obtained as

ge = 1.385× 10−4Iin (23)

where we have defined Iin = (1/2)ηε0c0 |Ee|2 in which c0
is the speed of light in vacuum and η being the background
refractive index of the crystal.

2.2 Transient gain factor

It is evident from equation (23) that a high power pulsed
laser can only yield a significant growth rate of the modu-
lated signal but with high power pump the study of tran-
sient effects becomes unavoidable. The advantage of in-
corporating the transient effects in our analysis is that we
can also predict threshold pump intensity (Ith) for the on-
set of modulation process with optimum pulse duration for
the modulational instability to occur. In general, the tran-
sient gain factor gT is related to steady-state gain factor
ge through the relation [27]

gT = (2gexΓτp)1/2 − Γτp (24)

where Γ being the optical photon life time, x is the inter-
action length and τp is the pulse duration. For very short
pulse (τp ≤ 10−10 s), the interaction length should be re-
placed by (clτp/2), where cl is the speed of light in the
crystal and is given by (c0/

√
εL) where εL is the lattice

dielectric constant of the material. By making gT = 0, in
equation (24) we can obtain the threshold pump inten-
sity as

Ith =
Γ

2Gecl
(25)

with Ge = ge/Iin, the steady-state gain per unit pump
intensity.

Numerical analysis have been done using Γ = 4 ×
108 s−1 for n-InSb crystal, which yields the threshold value
of the pump intensity for the onset of modulational insta-
bility as 2.253× 109 Wm−1.

However for τp ≥ 10−9 s, the cell length can be taken
equal to “x”, under such conditions we find

gT = (Γτp)1/2
[
− (Γτp)1/2 + (gex)1/2

]
· (26)

Using above expression we get the idea about the opti-
mum pulse duration (τp)opt above which no gain would
be achieved. By making gT = 0, equation (26) yields

(τp)opt ≈
gex

Γ
· (27)

A calculation for n-InSb using the values of ge obtained
earlier and x = 10−4 m gives

(τp)opt = (4.064× 10−11Iin) s. (28)

This value of (τp)opt not only explains the washing out
of the gain of modulated wave at large pulse duration
but also suggests that optimum pulse duration can be in-
creased by increasing the intensity of the pump.

3 Results and discussions

This section is devoted to the detailed numerical study
of the modulational instability of a semiconductor crystal
arising due to third-order susceptibility of the medium.
The consequent amplification of modulated waves result-
ing due to transfer of modulation from the pump wave to
the signal wave and resulting gain factors have been dealt
with in the present section.

The analytical results obtained are applied to a piezo-
electric semiconductor like n-InSb at 77 K irradiated by
a pulse 10.6 µm CO2 laser. The following set of pa-
rameters has been used in the analysis: m = 0.014m0,
β = 0.054 C m−2, ρ = 5.8 × 103 kg m−3, εL = 18.0,
ε1 = 15.8, ν = 4 × 1011 s−1, ne = 1024 m−3, where m0

being the free electron mass.
A detailed investigation about the nature of the

steady-state gain factor reveals that an appreciable ampli-
fication of modulated wave (ge ≈ 104−106 m−1) is obtain-
able only when ωa ≈ ka · va (i.e. condition of anomalous
dispersion). Growth rate of the modulated wave is found
to be independent of its frequency instead it depends on
the frequency of the pump and acoustic wave; a fact in
agreement with experimental observations [28].

The expression for the steady-state growth rate as
obtained from equation (22) has the usual

ge ∝
[
ak2
a(b|Ee|2 − ak2

a)
]1/2

nature as predicted by Drake et al. [29]. The gain constant
ge has the usual characteristic dependence on the wave
vector. It can be inferred from equation (22) that for lower
magnitude of ka, (such that ωa � kava) ge increases with
ka and at ωa ≈ kava, i.e. for nondispersive acoustic mode
ge is maximum and further when ωa < kava, ge shows a
steep decline with increasing ka. This nature of variation
of the steady-state growth rate with ka is in confirmation
with the usual dependence quoted above.

The numerical estimations (using Eq. (22)) deal-
ing with the carrier density influencing the steady-state
growth rate ge (= | − αe|) are plotted in Figure 1 for a
nondispersive acoustic mode i.e. at ωa ≈ ka · va (with
ka = 2.08 × 108 m−1, va = 4 × 103 m s−1 and ωa =
8.32 × 1011 s−1). Figure 1 shows the dependence of ge

on the carrier density ne through the plasma frequency
ωp when ωc = 0.9ω0, θ = 45◦, Ee = 107 V m−1. We have
considered the range of plasma frequency from 2.4× 1014

to 2.7× 1014 s−1, the corresponding carrier density would
be from 4.57× 1024 to 5.78× 1024 m−3. This range of free
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Fig. 1. Variation of steady-state gain (ge) with plasma fre-
quency (ωp) when ωc = 0.9ω0, θ = 45◦, Ee = 107 V m−1.
1: 2.5115×1014 s−1 and 2: 2.5230 × 1014 s−1.

carrier density may easily be obtained by varying doping
level. But it is also true that one may work with a crys-
tal of fixed density at a time, thus this variation is not so
important for discussion. Nevertheless, through this vari-
ation one may choose the most appropriate density level
for a particular use. It is found from Figure 1 that the
steady-state gain first increases until the plasma frequency
reaches 2.51× 1014 s−1, and then suddenly decreases very
sharply and becomes minimum at ωp ≈ 2.5115×1014 s−1.
In the region 2.5115 × 1014 < ωp < 2.5230 × 1014 s−1,
one does not get amplification of the wave but atten-
uation as in this region δ2 < ν2. This region is illus-
trated by discontinuity of the curve in the plot. For
ωp > 2.5230 × 1014 s−1 the gain constant again starts
increasing very sharply and achieve a maximum value, af-
ter which it once again decreases. Thus the presence of an
external magnetic field for which ωc = 0.9ω0, one can get
considerably large amount of gains at ωp = 2.5075× 1014

and 2.5271×1014 s−1. The corresponding carrier densities
would be 4.985× 1024 and 5.063× 1024 m−3. Thus crys-
tals with these values of carrier concentration yield maxi-
mum steady-state gain for the said interaction. The above
quoted variation of steady-state gain constant with plasma
frequency may very easily be utilised in construction of
optical switches. A variation (using Eq. (22)) of steady-
state gain ge with magnetostatic field Bs via cyclotron fre-
quency ωc is shown in Figure 2. One may infer from the fig-
ure that ge remains almost constant for lower values of ωc

(upto 1011 s−1). Thereafter it starts decreasing as ωc ap-
proaches ν. This trend continues until ωc ≈ ωp. A further

Fig. 2. Variation of steady-state gain (ge) with cyclotron
frequency (ωc) when ωp = 1.12 × 1014 s−1, θ = 45◦, Ee =
107 V m−1.

increase in ωc (in the region ωc ≥ ωp) stabilises ge once
again and it becomes independent of ωc. We have plotted
the variation in the range 109 < ωc < 1.7 × 1014 s−1 for
which corresponding strength of magnetic field would be
7.96× 10−5 < |Bs| < 11 T, which can very easily be ob-
tained by using electromagnets.

We now address ourselves to the question of the be-
haviour of the transient gain gT as a function of the pump
pulse duration τp. For this purpose, we have used equa-
tion (26) and considered pulses with duration in the range
10−10 ≤ τp ≤ 10−8 s. The cell length is taken as 10−4 m.
Figure 3 represents the qualitative behaviour of the tran-
sient gain factor gT of modulated signal as a function of
the pulse duration with pump intensity Iin as a parame-
ter. gT first increases with τp when Iin is fixed, and attains
maximum value. Curves I, II and III show that the rise in
Iin shifts the maximum gain point towards higher value of
τp. Keeping Iin fixed, if τp is chosen beyond the maximum
gain point, gT diminishes very rapidly.

It has also been found that heavily doped semiconduc-
tors are the most appropriate host for modulation pro-
cesses. Hence larger amplification of the waves can be
attained by increasing the carrier concentration of the
magnetised medium by n-type doping in the crystal. How-
ever doping should not exceed the limit for which the ef-
fective plasma frequency ωp exceeds the input pump fre-
quency ω0. Because in the regime when ωp > ω0, the
electromagnetic pump wave will be reflected back by the
intervening medium.
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Fig. 3. Variation of transient gain (gT) with the pump pulse
duration (τp) when ωc = 0.9ω0, θ = 90◦ with the pump in-
tensity (Iin) as a parameter. Curves I, II and III correspond
to Iin = 7.586 × 1010, 1.165 × 1011, and 1.60 × 1011 W m−2,
respectively.

One can also estimate the approximate value of the
third-order optical susceptibility χ(3)

e of the crystal in the
present scheme. It may be recalled that we have com-
pletely neglected the influence of the virtual transitions
and assumed the induced nonlinear current density as the
origin of induced polarisation. Equation (18) under appro-
priate numerical assumptions can be used to find

χ(3)
e ≈

ω2
pe

2ε1κ
2k4
ava(ω2

cx + ν2)
m2ωaΓ 2

a δ
2(ω2

c + ν2)
· (29)

We find form equation (29) that crystals with
ne = 1024 m−3, χe ≈ 10−7 esu and ne = 1022 m−3,
χe ≈ 10−11 esu whereas it has been experimentally ob-
served that the third-order optical susceptibility for III-V
semiconductor is of the order of 10−12 esu with carrier
concentration of 1022 m−3 [24]. Thus one may infer that
the doping concentration plays an important role in rais-
ing the third-order optical susceptibility of the crystal.
The magnetic field (in terms of ωc) also effectively raises
the third-order optical susceptibility of the medium. By
raising the magnitude of χ(3)

e , it is possible to incite third-
order nonlinear phenomena at much lower pump ampli-
tudes. Thus in III-V crystals, modulational interaction in
the infrared regime appears quite promising under the typ-
ical resonance condition viz. ωp ≈ ω0 and replaces the
conventional idea of using high power lasers.

From the above discussions it may be concluded that
the magnitude and orientation of applied external mag-
netic field are favourable for the onset of the modulational
amplification of the modulated wave in heavily doped
regimes. The highlight of our study is the modulation
process (steady-state as well as transient) can be stud-
ied in noncentrosymmetric dielectric medium only with
the knowledge of piezoelectric potential, using a simple
hydrodynamic treatment.

One of us (GS) is thankful to University Grants Commission,
New Delhi for the award of Teacher Research Fellowship to
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